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Abstrsd. This paper presents the available solutions to the problem of expressing the 
number operator in terms of the creation and annihilation operators in the case of the 
various singlemode q-oscillators. This study reveals interesting number theoretic aspects 
of the problem. 

Recently it has been shown [l ,  21 that for a single-mode q-oscillator defined by the 
relations 

[ N, a'] = a' [ N ,  a ]  = -a ( l a )  
aa' - qa'a = 1 (Ib) 

with real qc [-1, W), the excitation number operator N can be expressed in terms of 
the creation (a ' )  and the annihilation ( a )  operators as 

The spectrum of N has been assumed to be (0, 1,2 , .  . .)and the ground state 10) (NIO) = 
0, a10) = 0) is taken to he non-degenerate. It is straightforward to derive the expression 
(2) by substituting the ansatz 

in ( l a )  and using ( l b )  to obtain the coefficients {vm) recursively. In this paper we 
obtain N in the same form as in (3) for other kinds of deformed oscillators different 
from (i). in  general, we shaii take a deformed osciiiator algebra to be defined by the 
relations (la) and 

aa'-@'a = p ( N ) .  (4) 
6 and p( N) should be such that the function 

"-1 

h ( n ) =  1 t k g ( n - k - l )  n 3  1, h(O)=O 
k - 0  

is real and non-negative. This study reveals interesting number theoretic aspects of the 
problem of expressing N in terms of (a, a') in the case of deformed oscillator algebras. 
For certain special choices of 6 and p ( N )  other types of expression for N in terms 
of (a, a'), different from (3), are also possible as we shall see below. 
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Generalized oscillators of the type ( 1 )  have been the subject of study in different 
contexts: dual resonance models in high energy physics [3], generalized coherent states 
[4], exploration of new methods of quantization [5-8], and new forms of quantum 
statistics [9-111. The emergence of quantum algebras, as common structures underlying 
several mathematical and physical theories, has led to the development of the q-boson 
oscillator algebra [U-171 with 

aat-qata = q-N. (6) 
The fermionic counterpart of (6), the q-fermion oscillator algebra, with 

aat+qata = q - N  (7) 

has also been studied [17,18] in connection with quantum superalgebras. The boson 
and the fermion oscillators are obtained as the q = 1 limit of (6) and (7) respectively. 
In the case of the algebra (1) both the boson and the fermion algebras are obtained 
as special cases in the limits q = 1 and q = -1 respectively. Another q-oscillator with 

= q - 2 N  (8) 

has been studied in [IO]; this algebra (8) also has both the boson and the fermon 
algebras as limiting cases corresponding to q = 1 and q = -1 respectively. 

As a generalization of the deformed oscillator algebras (1,6-8) we introduced in 
[19] the ( p ,  q)-oscillator with 

aa'-qa'a = P - ~ .  (9) 

As shown by us in detail in [ 191, through several examples, the ( p ,  q)-oscillator algebra 
(9) provides a convenient language for studying the two-parameter (p, q )  extensions 
of the standard quantum algebras with a single deformation parameter (4). The 
(p, q)-oscillator algebra (9) has also been noted in [ZO], as the two-parametergeneraliz- 
ation of the standard (suq(2)-related) q-oscillator algebra (6). In [ZO] the study is, 
primarily, to obtain the time-evolution of such deformed oscillator systems using the 
formalism of Lie-admissible algebras. 

The general deformed oscillator algebra (4) has been used in [21] to provide a 
unified picture of all the known (that is, standard (usual boson, fermion, parafermion 
and paraboson) and single-parameter (9)) quantizations of the simple harmonic oscil- 
lator (see also [20, 22,231). The two-parameter oscillator (9) is also a special case of 
(4). Further, it is noted in [21] that the general structure (4) may also be used to 
construct new deformations of the oscillator algebra; for example, a new oscillator 
called the Tamm-Dancoff cut-off q-oscillator is introduced corresponding to the choice 
5 = q, p( N) = qN. This Tamm-Dancoff cut-off q-oscillator may also be considered as 
the limiting case of (9) with p = q - ' .  To build a physical theory based on these deformed 
algebras it is necessary to express N in terms of (a, a t )  and the first step is the treatment 
of the single-mode case. 

Let us now consider the construction of N in the case of the general deformed 
oscillator (4). The commutation relations (4) imply that, up to phase factors, the 
orthonormal eigenstates of N, {ln)l Nln)  = nln), n = 0, 1.2,. . .}, are given by 

m I n ) = a ' l n - l )  n = 1 , 2 , 3 , .  . . (10) 

h ( n  + 1) - 5 h ( n )  = p ( n )  n=O,1,2 (.... ( 1 1 )  

where h ( n )  is defined, uniquely, by ( 5 )  such that 
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In the space of the Fock states {In)} ,  

I(mlaln)l'= Mn)S,m+l (mla'ln) = (nlalm)* m,n=O,1 ,2  ,.... (12) 

With this matrix realization (12), the coefficients {v,,,} in the expression (3) for N are 
seen to obey the relations 

n 
n = 1,2, .  . . -- ? - 

, , ,=I h(n -m) !  h(n)! 

h ( n ) ! = h ( n ) h ( n - l ) .  . . h(2)h(l)  h(O)!= 1. 

The unique solution for {v,,,} is obtained by solving (13) recursively. The result is 

m (m-1)  
U,,, =- + 

h ( m ) !  h(m - l)! {-&]+~~l~)! {-&+h(l)!h(l)!  

1 I +  
h(l)!h(2)! h(2)!h(l)! 

+ 

]+ ...+- - +...) ' I  h( l ) !  h ( m - l ) !  

(14) 
c,>O 

Thus, the equations (3) and (14) define N in terms of (a, a') in the case of the general 
deformed oscillator algebra (4). 

Now, forthe (p, q)-oscillator algebra (9) h(n)  = (q"  -p-")/(q-p-'), p and q can 
be real, or p*q = 1 for complex p and q, subject to the condition that this h (n )  is 
non-negative. For the q-oscillator ( l ) ,  corresponding to p = 1, q has to be real ( q  E 
[-1,00)), and h ( n ) = ( q " - l ) / ( q - l ) = [ n ] .  Comparingtheresults (2) and (14) inthis 
case one has the identity 

( - W  

- 
h( l ) !h( l ) !h( l ) !  

m ( m - k )  
+ E  -~ - 

h(m)! k=l h(m-k) !  h(cJ!h(c2)!. . . h(c , ) !  

(-')' ). (15) 
(1-q)" m ( m - k )  
__=- +E-( E [m]! k-1 [m-k l !  ~,+.,+...+ ,=* ([C,]![Cz]! ... [Cp]!) 

C,>O 

The q-deformed number [n], referred to as the basic number in the number theory 
literature, was introduced originally the Heine [24]. Using the notation of number 
theory the identity (15) can be written as 

where 

( 4 ;  4).  = ( l - q ) ( 1  - q 2 ) . .  . (1 -4')=(1-q)"([nI!). (17) 

The identity (15) has also been noted in [2] in a slightly different form. In the case of 
the usual boson corresponding to the limit p = 1 and q = 1, h (n )  = n, v,,, = a,,,,, and 
the identity ( IS)  reduces to 

=ami .  (18) 
1 "-1 

-+ z (m - l ) !  k - 1  ( m  - !Cz!. . . C, !) 
C,>O 
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For an oscillator with q = 0 and p = 1 (see [9]) h( n )  = 1 for any n 3 1 and v,,, = 1 for 
all m. Correspondingly, the identity (15) becomes 

R Chakrabarti and R Jagannathan 

Here, we have used the result [25] that the number of compositions (partitions 
considering also the order of the summands) of k with exactly p parts is (;I:). It would 
be worthwhile to see whether number theory can help to reduce the sum on the 
right-hand side of (14) to a more closed form for generic values of p and q. 

If p and q are complex and (pq)'" is an mth primitive root of unity then h ( n )  
becomes zero at n = m for odd m and at n = m/2 for even m. Then the corresponding 
oscillator system has only m (for odd m )  or m I 2  (for even m )  states in view of equation 
(lo), and expression (3) for N contains only a finite number of terms. This has been 
noted in [I]  in the case of the usual fermion ( p  = 1, q = -1).  

Besides expression (3) one can write N in terms of (a, a ' )  in other ways also for 
particular cases; such expressions may not be valid for all admissible values of p and 
q. For example, in the case of the oscillator (1) with q> 0 

(20) 

as noted in [lo]. In general, when p = q', with q (real)>O and r as any integer30, 
we have 

(21) 

N =In{] - ( I  -q)a'aJ/ln q 

N = In{ 1 - (q-' - q ) (  aut - q-'a'a)'a'a}/(( r+ 1 )  In q ) .  

To see this, one has to observe from the matrix realization (12) that for the ( p ,  4)- 
oscillator, in general, 

aa'-p-'a'a = q N  

(Ita = h ( N )  = ( q N  - p - N ) / ( q - p - ' ) .  (22) 

The oscillators ( I ) ,  (6) and (8) correspond respectively to r = O ,  1 and 2. Another 
expression for N in this case is 

This result is obtained by replacing in (2) q by q'+' and a by (q""a) and using the 
relations 

q ~ N / 2 n a t q r N / 2 - q ~ + l a t q ~ N a  = 1 aa' - q-'a'a = qN.  (24) 

Let us now make a few remarks on expression (3) for N written in the form 

N = a'A= A'a ( 2 5 )  

following [l]. Generalizing the observation in [ I ]  in the case of N given by (2) for 
the oscillator ( I ) ,  one has 

[A,a']=[a,A']=l (26) 

and hence the coherent states of the corresponding oscillators may be obtained by 
defining l z )  - {exp(zA')]lO). There is another interesting application of the result (2) 
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in connection with the q-analysis [26-281. Defining the q-derivative (or the q-difference) 
operator 

following Jackson [26] ,  one has a realization of the relations (1) in the identification 

(28)  
d 

dx a = D, a ' = x  N=x--. 

Now the relations N = a t A  and [A, a'] = 1 imply that we must identify A with d/dx 
in this realization. Thus one has the identity 

as the inverse relation for (27);  this result may be of relevance for numerical analysis. 
Finally, to conclude, let us make the observation that the (a, a') commutation 

relations of the (p, q)-oscillator, namely a a t - q a t a  =p-N and aa'-p-'a'a =qN,  may 
be written in an N-independent form as 

[ a , [ a , a ' ] , ] , ~ ~ ~ [ a , [ a , a ' ] ; ~ ] , = ~  (30) 
with the notation [A, B ] ,  = A B  - aBA. Written in the form (30), the q up- '  symmetry 
of the ( p ,  q)-oscillator is manifest. Furthermore, it may be noted that in view of the 
relation [a, NI = a, or aa - aN+la = 0 for any a, the (a, a') commutation relations 
follow uniquely from (30). 

Note added in proox Far multimode systems of deformed oscillators covariant under several quantum groups 
the number operaton have been constructed in [29]. 
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