On the number operators of single-mode q -oscillators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 256393
(http://iopscience.iop.org/0305-4470/25/23/032)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:41

Please note that terms and conditions apply.

On the number operators of single-mode \boldsymbol{q}-oscillators

R Chakrabarti† and R Jagannathan \ddagger

\dagger Department of Theoretical Physics, University of Madras, Guindy Campus, Madras-600 025, India
\ddagger The Institute of Mathematical Sciences, C.I.T. Campus, Tharamani, Madras-600 113, India

Received 3 February 1992

Abstract

This paper presents the available solutions to the problem of expressing the number operator in terms of the creation and annihilation operators in the case of the various single-mode \boldsymbol{q}-oscillators. This study reveals interesting number theoretic aspects of the problem.

Recently it has been shown [1,2] that for a single-mode q-oscillator defined by the relations

$$
\begin{align*}
& {\left[N, a^{\dagger}\right]=a^{\dagger} \quad[N, a]=-a} \tag{1a}\\
& a a^{\dagger}-q a^{\dagger} a=1 \tag{1b}
\end{align*}
$$

with real $q \in[-1, \infty)$, the excitation number operator N can be expressed in terms of the creation (a^{\dagger}) and the annihilation (a) operators as

$$
\begin{equation*}
N=\sum_{m=1}^{\infty} \frac{(1-q)^{m}}{\left(1-q^{m}\right)}\left(a^{\dagger}\right)^{m} a^{m} \tag{2}
\end{equation*}
$$

The spectrum of N has been assumed to be $(0,1,2, \ldots)$ and the ground state $|0\rangle(N|0\rangle=$ $0, a|0\rangle=0$) is taken to be non-degenerate. It is straightforward to derive the expression (2) by substituting the ansatz

$$
\begin{equation*}
N=\sum_{m=1}^{\infty} \nu_{m}\left(a^{\dagger}\right)^{m} a^{m} \tag{3}
\end{equation*}
$$

in (1a) and using (1b) to obtain the coefficients $\left\{\nu_{m}\right\}$ recursively. In this paper we obtain N in the same form as in (3) for other kinds of deformed oscillators different from (i). In general, we shail take a deformed osciliator algebra to be defined by the relations ($1 a$) and

$$
\begin{equation*}
a a^{\dagger}-\xi a^{\dagger} a=\mu(N) \tag{4}
\end{equation*}
$$

ξ and $\mu(N)$ should be such that the function

$$
\begin{equation*}
h(n)=\sum_{k=0}^{n-1} \xi^{k} \mu(n-k-1) \quad n \geqslant 1, h(0)=0 \tag{5}
\end{equation*}
$$

is real and non-negative. This study reveals interesting number theoretic aspects of the problem of expressing N in terms of (a, a^{\dagger}) in the case of deformed oscillator algebras. For certain special choices of ξ and $\mu(N)$ other types of expression for N in terms of (a, a^{\dagger}), different from (3), are also possible as we shall see below.

Generalized oscillators of the type (1) have been the subject of study in different contexts: dual resonance models in high energy physics [3], generalized coherent states [4], exploration of new methods of quantization [5-8], and new forms of quantum statistics [9-11]. The emergence of quantum algebras, as common structures underlying several mathematical and physical theories, has led to the development of the q-boson oscillator algebra [12-17] with

$$
\begin{equation*}
a a^{\dagger}-q a^{\dagger} a=q^{-N} \tag{6}
\end{equation*}
$$

The fermionic counterpart of (6), the q-fermion oscillator algebra, with

$$
\begin{equation*}
a a^{\dagger}+q a^{\dagger} a=q^{-N} \tag{7}
\end{equation*}
$$

has also been studied $[17,18]$ in connection with quantum superalgebras. The boson and the fermion oscillators are obtained as the $q=1$ limit of (6) and (7) respectively. In the case of the algebra (1) both the boson and the fermion algebras are obtained as special cases in the limits $q=1$ and $q=-1$ respectively. Another q-oscillator with

$$
\begin{equation*}
a a^{\dagger}-q a^{\dagger} a=q^{-2 N} \tag{8}
\end{equation*}
$$

has been studied in [10]; this algebra (8) also has both the boson and the fermon algebras as limiting cases corresponding to $q=1$ and $q=-1$ respectively.

As a generalization of the deformed oscillator algebras $(1,6-8)$ we introduced in [19] the (p, q)-oscillator with

$$
\begin{equation*}
a a^{\dagger}-q a^{\dagger} a=p^{-N} . \tag{9}
\end{equation*}
$$

As shown by us in detail in [19], through several examples, the (p, q)-oscillator algebra (9) provides a convenient language for studying the two-parameter (p, q) extensions of the standard quantum algebras with a single deformation parameter (q). The (p, q)-oscillator algebra (9) has also been noted in [20], as the two-parameter generalization of the standard ($\mathrm{su}_{q}(2)$-related) q-oscillator algebra (6). In [20] the study is, primarily, to obtain the time-evolution of such deformed oscillator systems using the formalism of Lie-admissible algebras.

The general deformed oscillator algebra (4) has been used in [21] to provide a unified picture of all the known (that is, standard (usual boson, fermion, parafermion and paraboson) and single-parameter (q)) quantizations of the simple harmonic oscillator (see also $[20,22,23]$). The two-parameter oscillator (9) is also a special case of (4). Further, it is noted in [21] that the general structure (4) may also be used to construct new deformations of the oscillator algebra; for example, a new oscillator called the Tamm-Dancoff cut-off q-oscillator is introduced corresponding to the choice $\xi=q, \mu(N)=q^{N}$. This Tamm-Dancoff cut-off q-oscillator may also be considered as the limiting case of (9) with $p=q^{-1}$. To build a physical theory based on these deformed algebras it is necessary to express N in terms of (a, a^{\dagger}) and the first step is the treatment of the single-mode case.

Let us now consider the construction of N in the case of the general deformed oscillator (4). The commutation relations (4) imply that, up to phase factors, the orthonormal eigenstates of $N,\{|n\rangle|N| n\rangle=n|n\rangle, n=0,1,2, \ldots\}$, are given by

$$
\begin{equation*}
\sqrt{h(n)}|n\rangle=a^{\dagger}|n-1\rangle \quad n=1,2,3, \ldots \tag{10}
\end{equation*}
$$

where $h(n)$ is defined, uniquely, by (5) such that

$$
\begin{equation*}
h(n+1)-\xi h(n)=\mu(n) \quad n=0,1,2, \ldots \tag{11}
\end{equation*}
$$

In the space of the Fock states $\{|n\rangle\}$,
$\mid\langle m| a|n\rangle^{2}=h(n) \delta_{n, m+1} \quad\langle m| a^{\dagger}|n\rangle=\langle n| a|m\rangle^{*} \quad m, n=0,1,2, \ldots$
With this matrix realization (12), the coefficients $\left\{\nu_{m}\right\}$ in the expression (3) for N are seen to obey the relations

$$
\begin{align*}
& \sum_{m=1}^{n} \frac{\nu_{m}}{h(n-m)!}=\frac{n}{h(n)!} \quad n=1,2, \ldots \tag{13}\\
& h(n)!=h(n) h(n-1) \ldots h(2) h(1) \quad h(0)!=1 .
\end{align*}
$$

The unique solution for $\left\{\nu_{m}\right\}$ is obtained by solving (13) recursively. The result is

$$
\begin{align*}
\nu_{m}=\frac{m}{h(m)!}+ & \frac{(m-1)}{h(m-1)!}\left\{-\frac{1}{h(1)!}\right\}+\frac{(m-2)}{h(m-2)!}\left\{-\frac{1}{h(2)!}+\frac{1}{h(1)!h(1)!}\right\} \\
& +\frac{(m-3)}{h(m-3)!}\left\{-\frac{1}{h(3)!}+\frac{1}{h(1)!h(2)!}+\frac{1}{h(2)!h(1)!}\right. \\
& \left.-\frac{1}{h(1)!h(1)!h(1)!}\right\}+\ldots+\frac{1}{h(1)!}\left\{-\frac{1}{h(m-1)!}+\ldots\right\} \\
= & \frac{m}{h(m)!}+\sum_{k=1}^{m-1} \frac{(m-k)}{h(m-k)!}\left(\sum_{\substack{c_{1}+c_{2}+\ldots+c_{p}=k \\
c_{j}>0}} \frac{(-1)^{p}}{h\left(c_{1}\right)!h\left(c_{2}\right)!\ldots h\left(c_{p}\right)!}\right) . \tag{14}
\end{align*}
$$

Thus, the equations (3) and (14) define N in terms of (a, a^{\dagger}) in the case of the general deformed oscillator algebra (4).

Now, for the (p, q)-oscillator algebra (9) $h(n)=\left(q^{n}-p^{-n}\right) /\left(q-p^{-1}\right), p$ and q can be real, or $p^{*} q=1$ for complex p and q, subject to the condition that this $h(n)$ is non-negative. For the q-oscillator (1), corresponding to $p=1, q$ has to be real ($q \in$ $[-1, \infty)$), and $h(n)=\left(q^{n}-1\right) /(q-1)=[n]$. Comparing the results (2) and (14) in this case one has the identity

$$
\begin{equation*}
\frac{(1-q)^{m}}{\left(1-q^{m}\right)}=\frac{m}{[m]!}+\sum_{k=1}^{m-1} \frac{(m-k)}{[m-k]!!}\left(\sum_{\substack{c_{1}+c_{2}+\ldots+c_{p}=k \\ c_{\rho}>0}} \frac{(-1)^{p}}{} \frac{\left(\left[c_{1}\right]!\left[c_{2}\right]!\ldots\left[c_{p}\right]!\right)}{}\right) \tag{15}
\end{equation*}
$$

The q-deformed number [n], referred to as the basic number in the number theory literature, was introduced originally the Heine [24]. Using the notation of number theory the identity (15) can be written as

$$
\begin{equation*}
\frac{1}{\left(1-q^{m}\right)}=\frac{m}{(q ; q)_{m}}+\sum_{k=1}^{m-1} \frac{(m-k)}{(q ; q)_{m-k}}\left(\sum_{\substack{c_{1}+c_{2}+\ldots+c_{p}=k \\ c_{j}>0}} \frac{(-1)^{p}}{\left((q ; q)_{c_{1}} \ldots(q ; q)_{c_{p}}\right)}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
(q ; q)_{n}=(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)=(1-q)^{n}([n]!) . \tag{17}
\end{equation*}
$$

The identity (15) has also been noted in [2] in a slightly different form. In the case of the usual boson corresponding to the limit $p=1$ and $q=1, h(n)=n, \nu_{m}=\delta_{m 1}$, and the identity (15) reduces to

$$
\begin{equation*}
\frac{1}{(m-1)!}+\sum_{k=1}^{m-1} \frac{1}{(m-k-1)!}\left(\sum_{\substack{c_{1}+c_{2}+\ldots+c_{p}=k \\ c_{j}>0}} \frac{(-1)^{p}}{\left(c_{1}!c_{2}!\ldots c_{p}!\right)}\right)=\delta_{m 1} \tag{18}
\end{equation*}
$$

For an oscillator with $q=0$ and $p=1$ (see [9]) $h(n)=1$ for any $n \geqslant 1$ and $\nu_{m}=1$ for all m. Correspondingly, the identity (15) becomes

$$
\begin{equation*}
m+\sum_{k=1}^{m-1}(m-k)\left\{\sum_{p=1}^{k}(-1)^{p}\binom{k-1}{p-1}\right\}=1 \quad \forall m \geqslant 1 . \tag{19}
\end{equation*}
$$

Here, we have used the result [25] that the number of compositions (partitions considering also the order of the summands) of k with exactly p parts is $\binom{k-1}{p-1}$. It would be worthwhile to see whether number theory can help to reduce the sum on the right-hand side of (14) to a more closed form for generic values of p and q.

If p and q are complex and $(p q)^{1 / 2}$ is an m th primitive root of unity then $h(n)$ becomes zero at $n=m$ for odd m and at $n=m / 2$ for even m. Then the corresponding oscillator system has only m (for odd m) or $m / 2$ (for even m) states in view of equation (10), and expression (3) for N contains only a finite number of terms. This has been noted in [1] in the case of the usual fermion ($p=1, q=-1$).

Besides expression (3) one can write N in terms of (a, a^{\dagger}) in other ways also for particular cases; such expressions may not be valid for all admissible values of p and q. For example, in the case of the oscillator (1) with $q>0$

$$
\begin{equation*}
N=\ln \left\{1-(1-q) a^{\dagger} a\right\} / \ln q \tag{20}
\end{equation*}
$$

as noted in [10]. In general, when $p=q^{r}$, with q (real) >0 and r as any integer $\geqslant 0$, we have

$$
\begin{equation*}
N=\ln \left\{1-\left(q^{-r}-q\right)\left(a a^{\dagger}-q^{-r} a^{\dagger} a\right)^{r} a^{\dagger} a\right\} /((r+1) \ln q) \tag{21}
\end{equation*}
$$

To see this, one has to observe from the matrix realization (12) that for the (p, q)oscillator, in general,

$$
\begin{align*}
& a a^{\dagger}-p^{-1} a^{\dagger} a=q^{N} \\
& a^{\dagger} a=h(N)=\left(q^{N}-p^{-N}\right) /\left(q-p^{-1}\right) . \tag{22}
\end{align*}
$$

The oscillators (1), (6) and (8) correspond respectively to $r=0,1$ and 2. Another expression for N in this case is

$$
\begin{equation*}
N=\sum_{m=1}^{\infty} \frac{\left(1-q^{r+1}\right)^{m}}{\left(1-q^{m(r+1)}\right)} q^{-r m(m+1) / 2}\left(a^{\dagger}\right)^{m} a^{m}\left(a a^{\dagger}-q^{-r} a^{\dagger} a\right)^{m} \tag{23}
\end{equation*}
$$

This result is obtained by replacing in (2) q by q^{r+1} and a by ($q^{r N / 2} a$) and using the relations

$$
\begin{equation*}
q^{r N / 2} a a^{\dagger} q^{r N / 2}-q^{r+1} a^{\dagger} q^{r N} a=1 \quad a a^{\dagger}-q^{-r} a^{\dagger} a=q^{N} \tag{24}
\end{equation*}
$$

Let us now make a few remarks on expression (3) for N written in the form

$$
\begin{equation*}
N=a^{\dagger} A=A^{\dagger} a \tag{25}
\end{equation*}
$$

following [1]. Generalizing the observation in [1] in the case of N given by (2) for the oscillator (1), one has

$$
\begin{equation*}
\left[A, a^{\dagger}\right]=\left[a, A^{\dagger}\right]=1 \tag{26}
\end{equation*}
$$

and hence the coherent states of the corresponding oscillators may be obtained by defining $|z\rangle \sim\left\{\exp \left(z A^{\dagger}\right)\right\}|0\rangle$. There is another interesting application of the result (2)
in connection with the q-analysis [26-28]. Defining the q-derivative (or the q-difference) operator

$$
\begin{equation*}
D_{q} \psi(x)=\frac{\psi(q x)-\psi(x)}{q x-x}=\frac{\left(q^{x \mathrm{~d} / \mathrm{d} x}-1\right) \psi(x)}{(q-1) x} \tag{27}
\end{equation*}
$$

following Jackson [26], one has a realization of the relations (1) in the identification

$$
\begin{equation*}
a=D_{q} \quad a^{\dagger}=x \quad N=x \frac{\mathrm{~d}}{\mathrm{~d} x} \tag{28}
\end{equation*}
$$

Now the relations $N=a^{\dagger} A$ and $\left[A, a^{\dagger}\right]=1$ imply that we must identify A with $\mathrm{d} / \mathrm{d} x$ in this realization. Thus one has the identity

$$
\begin{equation*}
\frac{\mathrm{d} \psi}{\mathrm{~d} x}=\sum_{m=1}^{\infty} \frac{(1-q)^{m}}{\left(1-q^{m}\right)} x^{m-1}\left(D_{q}\right)^{m} \psi \tag{29}
\end{equation*}
$$

as the inverse relation for (27); this result may be of relevance for numerical analysis.
Finally, to conclude, let us make the observation that the (a, a^{\dagger}) commutation relations of the (p, q)-oscillator, namely $a a^{\dagger}-q a^{\dagger} a=p^{-N}$ and $a a^{\dagger}-p^{-1} a^{\dagger} a=q^{N}$, may be written in an N-independent form as

$$
\begin{equation*}
\left[a,\left[a, a^{\dagger}\right]_{q}\right]_{p^{-1}} \equiv\left[a,\left[a, a^{\dagger}\right]_{p^{-1}}\right]_{q}=0 \tag{30}
\end{equation*}
$$

with the notation $[A, B]_{\alpha}=A B-\alpha B A$. Written in the form (30), the $q \leftrightarrow p^{-1}$ symmetry of the (p, q)-oscillator is manifest. Furthermore, it may be noted that in view of the relation $[a, N]=a$, or $a \alpha^{N}-\alpha^{N+1} a=0$ for any α, the (a, a^{\dagger}) commutation relations follow uniquely from (30).

Note added in proof. For multimode systems of deformed oscillators covariant under several quantum groups the number operators have been constructed in [29].

References

[1] Chaturvedi S, Kapoor A K, Sandhya R, Srinivasan V and Simon R 1991 Phys. Rev. A 434555
[2] Chaturvedj S and Srinivasan V 1991 Phys. Rev. A 448020
[3] Coon D D, Yu S and Baker M 1972 Phys. Rev. D 51429
[4] Arik M and Coon D D 1976 J. Math. Phys. 17524
[5] Kuryshkin V V 1980 Ann. Found. L de Broglie 5111
[6] Jannussis A, Brodimas G, Sourlas D and Zisis V 1981 Lett. Nuovo Cimento 30123
[7] Krolikowski W 1983 Acta Phys. Pol. B 14689
[8] Madiyanane S and Sathyanarayana M V 1984 Lett. Nuovo Cimento 4019
[9] Greenberg O W 1991 Phys. Rev. D 434111
[10] Mohapatra R N 1990 Phys. Lett. B 242407
[11] Mishra A K and Rajaskaran G 1992 Pramana-J. Phys. 38 L411
[12] Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
[13] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
[14] Sun C P and Fu H C 1989 J. Phys. A: Math. Gen. 22 L983
[15] Kulish P P and Damaskinsky E V 1990 J. Phys. A: Math. Gen. 23 L415
[16] Kundu A and Basu Mallick B 1991 Phys. Lett. 156A 1991
[17] Chaichian M and Kulish P P 1990 Quantum superalgebras, q-oscillators and applications Preprint CERN TH-5969/90
[18] Parthasarathy R and Viswanathan K S 1991 J. Phys. A: Math. Gen. 24613
[19] Chakrabarti R and Jagannathan R 1991 J. Phys. A: Math. Gen. 241711
[20] Jannussis A, Brodimas G and Mignani L 1991 J. Phys. A: Math. Gen. 24 L775
[21] Odaka K, Kishi T and Kamefuchi S 1991 J. Phys. A: Math. Gen. 24 L591
[22] Chaturvedi S and Srinivasan V 1991 Phys. Rev. A 448024
[23] Daskaloyannis C 1991 J. Phys. A: Math. Gen. 24 L789
[24] Heine E 1878 Handbuch der Kugelfunctionen (Berlin: Riemer)
[25] Andrews G E 1976 The theory of partitions Encyclopedia of Mathematics and its Applications vol 2 (Reading, MA: Addison-Wesley) ch 4
[26] Jackson F H 1908 Trans. R. Soc. Edinburgh 46253
[27] Exton H 1983 q-Hypergeometric Functions and Applications (Chichester: Ellis Horwood)
[28] Andrews G E 1986 q-Series: Their Development and Applications in Analysis, Number Theory, Com-
binatorics, Physics and Computer Algebra (Conf. Board Math. Sci.) (Providence, RI: American Mathematical Society)
[29] Jagannathan R, Sridhar R, Vasudevan R, Chaturvedi S, Krishnakumari M, Shanta P and Srinivasan
V 1992 J. Phys. A: Math. Gen. 25 6429-54

